CHAPTER-2

POLYNOMIALS

KEY POINTS

- A Polynomial p(x) in one variable x is an algebraic expression in x of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, where $a_0, a_1, a_2, ..., a_n$ are real numbers and $a_n \ne 0$ are called coefficients and n is a whole numbers.
- The highest power of variable x in a polynomial p(x) is called the degree of the polynomial.
- a_0 , a_1 , a_2 ,, an are respectively the coefficients of x^0 , x, x^2 , x^n , and n is called the degree of the polynomial. Each of $a_n x^n$, $a_{n-1} x^{n-1}$ a_0 with an $\neq 0$, is called a term of the polynomial p (x)
- A polynomial having one term is called monomial, having two terms called binomial and having three terms called trinomial.
- A polynomial of degree one is called linear polynomial, having degree two is called quadratic polynomial and of degree three is called cubic polynomial.
- For a polynomial p(x) if p(a) = 0 where a is a real number we say that 'a' is a zero of the polynomial.
- If p(x) is any polynomial of degree greater than or equal to 1 and p(x) is divided by a linear polynomial x a, then the remainder is p(a). This is called remainder theorem.
- If p(x) is a polynomial of degree ≥ 1 and 'a' is any real number then
 - (i) (x-a) is a factor of p(x), if p(a) = 0 and
 - (ii) p(a) = 0 if (x-a) is a factor of p(x).

This is called factor theorem.

- A polynomial of degree 'n' can have at most n zeroes.
- Some algebraic identities :-

(i)
$$(x+y)^2 = x^2 + 2xy + y^2$$

(ii)
$$(x-y)^2 = x^2 - 2xy + y^2$$

(iii)
$$x^2-y^2 = (x+y)(x-y)$$

(iv)
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

(v)
$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

(vi)
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y) = x^3 + y^3 + 3x^2y + 3xy^2$$

(vii)
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y) = x^3 - y^3 - 3x^2y + 3xy^2$$

(viii)
$$x^3+y^3 = (x+y)(x^2-xy+y^2)$$

ix)
$$x^3-y^3 = (x-y)(x^2+xy+y^2)$$

x)
$$x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$

$$= \frac{1}{2} (x+y+z) \{ (x-y)^2 + (y-z)^2 + (z-x)^2 \}$$

xi) If
$$x+y+z=0$$
, then $x^3 + y^3 + z^3 = 3xyz$

WISER ACADEMY

Part-A

- 1. Write the coefficient of y^3 in $5y^3 + 2y^2 y + 5$
- 2. Find the coefficient of x^2 in $(x^2-1)(x-2)$
- 3. If (x-2) is one of the factor of 3x-2a, then find the value of a.
- 4. Find the degree of polynomial $\frac{x^3 + 3x 1}{5} \frac{5}{2}x^2 x^5$
- 5. If $p(x) = x^3 3x^2 + 2x 3$ find the value of p(1) + p(-1).
- 6. Find zeros of the polynomial $z^2 8$
- 7. Divident = Divisor × Quotient + ______
- 8. Give an example of Trinomial of degree 3.
- 9. Give one example of each monomial, binomial and quadratic polynomial.
- 10. Check whether x = 3 is a zero of polynomial $x^2 3x + x 3$.
- 11. Write the degree of the polynomial $\sqrt{7}$
- 12. If one of the zero of polynomial $3x^2 + 5x + k$ is -1, then find out the value of k.
- 13. Express $4x^2-4x+1$ as a square of binomial.

ACA Part - BMY

14. Check whether q(x) is a multiple of r(x) or not.

If
$$q(x) = 2x^3 - 11x^2 - 4x + 5$$
, $r(x) = 2x + 1$

- 15. Show that (x-5) is a factor of $x^3-3x^2-4x-30$ by Remainder theorom.
- 16. Evaluate by using suitable identity: (997)³

- 17. Find the zeroes of the polynomial p(x) = x(x-2)(x+3)
- 18. Find the quotient when $3x^2-7x-6$ is divided by (x-3)
- 19. Factorise $8x^3 + \sqrt{27}y^3$.
- 20. If p(x) = x + 9, then find p(x) + p(-x).
- 21. Find the product without multiplying directly 106 × 94
- 22. IF $36x^2 b = \left(6x + \frac{1}{5}\right)\left(6x \frac{1}{5}\right)$ then find the value of b.
- 23. Expand using suitable identity $(2x 3y + z)^2$
- 24. Find the value of $(351)^2 (350)^2$.

Part - C

- 25. Factorise: 64a2 + 96ab + 36b2
- 26. Factorise: $x^3 + 6x^2 + 11x + 6$
- 27. If $x^2 + y^2 = 49$ and x y = 3, then find the value of $x^3 y^3$.
- 28. Simplify: $(5a-2b)(25a^2+10ab+4b^2)-(2a+5b)(4a^2-10ab+25b^2)$
- 29. Find the sum of remainders when $x^3 3x^2 + 4x 4$ is divided by (x 1) and (x + 2).
- 30. Find the product $\left(p-\frac{1}{p}\right)\left(p+\frac{1}{p}\right)\left(p^2+\frac{1}{p^2}\right)\left(p^4+\frac{1}{p^4}\right)$
- 31. Factorise: $7\sqrt{2} k^2 10k 4\sqrt{2}$.
- 32. Simplify: $(3x-4y)^3 (3x+4y)^3$
- 33. Expand: $\left(\frac{1}{2}x \frac{1}{4}y + 2\right)^2$ using suitable identity.
- 34. Simplify: $(x + y + z)^2 (x y z)^2$.

Part - D

- 35. Factorise: $125x^3 + 8y^3 + z^3 30xyz$.
- 36. x + 2 is a factor of polynomial $ax^3 + bx^2 + x 2$ and the remainder 4 is obtained by dividing this polynomial by (x 2). Find the value of a and b.
- 37. Check whether

$$p(t) = 6t^3 + 3t^2 + 3t + 18$$
 is a multiple of $(2t + 3)$.

- 38. Find the value of k if (x + k) is a factor of the polynomial $x^3 + kx^2 2x + k + 4$ and factorise $x^4 x$.
- 39. If (x-3) and $\left(x-\frac{1}{3}\right)$ are factors of the polynomial $px^2 + 3x + r$, show that p = r.
- 40. (i) Using Identity, find the value of $(-7)^3 + (5)^3 + (2)^3$.
 - (ii) Find dimension of cube whose volume is given by expression $4x^2 + 14x + 6$
- 41. Give possible expression for the length and breadth of each of the following rectangles if.
 - (i) Area = $(x^2 + 5\sqrt{5}x + 30)$ sq. unit.
 - (ii) Area = $(24x^2 26x 8)$ sq. unit.
- 42. A literacy compaign was organised by Class IX girl students under NSS. Students made (x-5) rows and (3x-4) columns for the rally.
 - (a) Write the total number of students in the form of polynomial.
 - (b) Which values of students are depicted here?
- 43. Under tree plantation programme students of Class IX planted total $(3x^2-4x-4)$ trees in school.
 - (i) If total number of students in the class are (x 2) then find out number of trees planted by each student. (Assuming each student planted equal number of trees).
 - (ii) What values of students are exhibited here?

44. If a + b + c = 0, find the value of

$$\frac{(b+c)^2}{bc} + \frac{(c+a)^2}{ca} + \frac{(a+b)^2}{ab}$$

45. Simplify:

$$\frac{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3}$$

46. Factorise:

$$(2a-b-c)^3 + (2b-c-a)^3 + (2c-a-b)^3$$

47. If the polynomial $4x^3-16x^2+ax+7$ is exactly divisible by x-1, then find the value of a. Hence factorise the polynomial.

WISER ACADEMY

CHAPTER-2

POLYNOMIALS

ANSWERS

1. 5 2. –2

3. a=3

4.

5. -12 6. $+\sqrt{8}$, $-\sqrt{8}$

7. Remainder 8. $x^3 - 3x^2 + 2$ or any other example

2x, $2x^2 + 3$, $x^2 + 2x - 3$ or any other examples

10. Yes

11. Degree = 0 12. k = 2

13. $(2x-1)^2$ 14. No.

15. Hint put x = 5

16. 991026973 17. 0, 2, -3 18. 3x + 2

19. $(2x + \sqrt{3}y)(4x^2 - 2\sqrt{3}xy + 3y^2)$ 20. 18

21. Hint (100 + 6) (100 – 6)

22. $\frac{1}{25}$

23. $4x^2 + 9y^2 + z^2 - 12xy - 6yz + 4xz$

24. 701

25. $(8a+6b)^2$ 26. (x+1)(x+2)(x+3)

27. 207 28. 117a³ – 133b³ 29. –34

30.
$$p^8 - \frac{1}{p^8}$$

30. $p^8 - \frac{1}{p^8}$ 31. $(k - \sqrt{2})(7\sqrt{2}k + 4)$

32. $-8y(16y^2 + 27x^2) \text{ or } -128y^3 - 216x^2y$

33. $\frac{x^2}{4} + \frac{y^2}{16} + 4 - \frac{1}{4}xy - y + 2x$ 34. 4xy + 4zx

35. $(5x+2y+z)(25x^2+4y^2+z^2-10xy-2yz-5zx)$

36. a = 0, b = 2 37. Yes

38. $k = \frac{4}{3}, x(x-1)(x^2 + x + 1)$

40. (i) -210; (ii) 2, (x + 3), (2x + 1)

41. (i)
$$(x + 2\sqrt{5}), (x + 3\sqrt{5})$$
 (ii) $(4x + 1), (6x - 8)$

(ii)
$$(4x + 1)$$
, $(6x - 8)$

42. (a)
$$3x^2-19x+20$$

(b) Social responsibility, Empathy, etc.

43. (i)
$$(3x+2)$$

(ii) Scientific attitude, Dutiful, Environment awareness, Social values

46.
$$3(2a-b-c)(2b-c-a)(2c-a-b)$$

47.
$$a=5$$
, $(x-1)(2x+1)(2x-7)$

VISER ACADEMY